UC San Diego

Quantum Simulations

- We want to model complex systems, for which classical algorithms are slow and inefficient, using quantum simulations with ultra-cold atomic strontium gases
- Sr atoms are cooled to a BEC or DFG then arranged in lattices, which we can use to simulate condensed matter and quantum chemistry systems

Optical Tweezers

To control atoms with a small confining trap we want an "optical tweezer", a powerful laser beam focused to a sub-micron spot that, depending on the wavelength and the detuning, can apply gradient and radiation force on a polarizable atom to attract (in our case) or repel it.

Multiple tweezers can be produced using multiple beams.

These were implemented using:

- (1) acousto-optic deflectors (AODs), for precise and rapid motion;
- (2) holography via a digital micromirror device (DMD), for arbitrary 2D lattices.

Acousto-Optic Deflector (AOD) **Optical Tweezers**

A converging lens (or objective) transforms rotations in its back focal plane (BFP) into translations in its front focal plane (FFP).

the tweezers.

Multiple input frequencies produce multiple output beams, or tweezers.

They work best with monochrome images, like those needed for our discrete lattices.

continuous images as well:

(Left) Schematic of final setup. To come out collimated, the MOT beam is focused onto the BFP of the objective using the second 100mm lens, which also forms a relay telescope focused on the BFP for the other beams.

References:

D. Barredo et al. An atom-by-atom assembler of defect-free arbitrary 2D atomic arrays. Science 354, 1021 (2016) M. Endres et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024 (2016) F. Nogrette et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. *Phys. Rev. X* 4, 021034 (2014) D. Stuart and A. Kuhn. Single-atom trapping and transport in DMD-controlled optical tweezers. New J. Phys. 20, 023013 (2018)

