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 Particle Simulations
• Simulations of events are very important 

in high energy physics
• Classical physics simulation programs 

such as GEANT4 are accurate but can 
be slow and inefficient

• Machine Learning is a potential 
alternative where we approximate the 
simulations at much higher speeds

HGCAL Machine Learning at CERN
• The High Granularity 

Calorimeter will be a 
major new addition 
to CMS as part of the 
HL-LHC upgrade.

• We anticipate HL-LHC data to enter 
the exabyte regime (1 billion GB)

• Current rate of computational advances 
will not meet HL-LHC needs

• For simulation, there has been success 
using generative and convolutional 
neural networks (CNNs) 

Graph Neural Networks

• Very high granularity (i.e. lots of pixels) 
plus its irregular geometry means high 
computational effort

A prototype assembled module

[φ1, η1, E1]

[φ2, η2, E2]

[φ100, η100, E100]
…{100 hits 

with 
highest 
energy

[x1, y1, I1]

[x2, y2, I2]

[x100, y100, I100]

…}100 pixels 
with 

highest 
intensity

For ease of testing we 
used the MNIST 
handwritten digits dataset 
(right) instead and 
sparsified it to match the 
form of HGCAL data (up)

• CNNs convert the detector array data 
into a 3D image or matrix - this is 
inefficient due to sparsity of data and 
irregular geometry of HGCAL
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• Developed a new graph GAN for faster HGCAL 
data generation

• It was successful on sparsified MNIST dataset
• Next step (in progress) is to apply to HGCAL 

data

Examples of convolutional GANs in action 
above. Left: MNIST digits. Center : Faces. Right: 
ECAL detector data

Animations of the training process

• We propose Graph Neural 
Networks instead, where we 
represent detector hits as the nodes

• We thus have a network which is 1) 
sparse, 2) generalizable to any 
geometry and 3) more naturally 
suited to the data

Generative Adversarial Networks
• The challenge was that there are no 

published graph generative models yet - 
we had to develop one

• We used 
generative 
adversarial 
networks as our 
framework
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