Search

Raghav Kansal
Raghav Kansal
  • Home
  • News
  • Publications
    Highlights All
  • Presentations
    Highlights All
  • Projects
  • Awards
  • CV
  • Blog
  • Notes and Tutorials
    Standard Model Stats for HEP ML for HEP LHC and CMS

Publications

*
All ML Higgs CMS Simulation Anomaly Detection Equivariant / Physics-Informed ML Software Datasets and Benchmarking
Raghav Kansal, Carlos Pareja, Javier Duarte (2023). JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics. Submitted to JOSS.

PDF Cite Code Project

Zichun Hao, Raghav Kansal, Javier Duarte, Nadezda Chernyavskaya (2023). Lorentz group equivariant autoencoders. Eur. Phys. J. C.

PDF arXiv Cite Code Project Project DOI

Raghav Kansal, Anni Li, Javier Duarte, Nadezda Chernyavskaya, Maurizio Pierini, Breno Orzari, Thiago Tomei (2023). Evaluating generative models in high energy physics. Phys. Rev. D.

PDF arXiv Cite Code Project DOI

Javier Duarte, Haoyang Li, Avik Roy, Ruike Zhu, E. A. Huerta, Daniel Diaz, Philip Harris, Raghav Kansal, Daniel S. Katz, Ishaan H. Kavoori, Volodymyr V. Kindratenko, Farouk Mokhtar, Mark S. Neubauer, Sang Eon Park, Melissa Quinnan, Roger Rusack, Zhizhen Zhao (2022). FAIR AI Models in High Energy Physics. Submitted to Machine Learning: Science and Technology.

PDF arXiv Cite

Farouk Mokhtar, Raghav Kansal, Javier Duarte (2022). Do graph neural networks learn traditional jet substructure?. ML and the Physical Sciences Workshop @ NeurIPS 2022.

PDF arXiv Cite Project Poster

Mary Touranakou, Nadezda Chernyavskaya, Javier Duarte, Dimitrios Gunopulos, Raghav Kansal, Breno Orzari, Maurizio Pierini, Thiago Tomei, Jean-Roch Vlimant (2022). Particle-based fast jet simulation at the LHC with variational autoencoders. Machine Learning: Science and Technology.

PDF arXiv Cite Project DOI

CMS Collaboration (2022). Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks. Phys. Rev. Lett..

PDF arXiv Cite Project DOI

Artur Apresyan, Daniel Diaz, Javier Duarte, Sanmay Ganguly, Raghav Kansal, Nan Lu, Cristina Mantilla Suarez, Samadrita Mukherjee, Cristían Peña, Brian Sheldon, Si Xie (2022). Improving Di-Higgs Sensitivity at Future Colliders in Hadronic Final States with Machine Learning. Contribution to Snowmass 2022 Summer Study.

PDF arXiv Cite Project

Javier Duarte, Haoyang Li, Avik Roy, Ruike Zhu, E. A. Huerta, Daniel Diaz, Philip Harris, Raghav Kansal, Daniel S. Katz, Ishaan H. Kavoori, Volodymyr V. Kindratenko, Farouk Mokhtar, Mark S. Neubauer, Sang Eon Park, Melissa Quinnan, Roger Rusack, Zhizhen Zhao (2022). A FAIR and AI-ready Higgs boson decay dataset. Nature Scientific Data.

PDF arXiv Cite DOI

Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos (2021). Particle Cloud Generation with Message Passing Generative Adversarial Networks. NeurIPS 2021.

PDF arXiv Cite Code Dataset Project

Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier Duarte, Sukanya Krishna, Farouk Mokhtar, Jean-Roch Vlimant, Maurizio Pierini (2021). Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance. ML and the Physical Sciences Workshop @ NeurIPS 2021.

PDF arXiv Cite Project Project Poster

Farouk Mokhtar, Raghav Kansal, Daniel Diaz, Javier Duarte, Joosep Pata, Maurizio Pierini, Jean-Roch Vlimant (2021). Explaining machine-learned particle-flow reconstruction. ML and the Physical Sciences Workshop @ NeurIPS 2021.

PDF arXiv Cite Project Project Poster

Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Javier Duarte, Raghav Kansal, Jean-Roch Vlimant, Dimitrios Gunopulos (2021). Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC. LatinX in AI Research Workshop @ ICML 2021.

PDF arXiv Cite Project

Raghav Kansal, Javier Duarte, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos (2020). Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics. ML and the Physical Sciences Workshop @ NeurIPS 2020.

PDF arXiv Cite Code Project

© 2025 Raghav Kansal. All rights reserved.

Published with Wowchemy — the free, open source website builder that empowers creators.

Cite
Copy Download